Lecture 2
2023/2024
Microwave Devices and Circuits
for Radiocommunications

2023/2024

2C/1L, MDCR

- Attendance at minimum 7 sessions (course or laboratory)
- Lectures- associate professor Radu Damian
- Tuesday 16-18, Online, P8
- E-50\% final grade
- problems + (2p atten. lect.) + (3 tests) + (bonus activity)
- first test L1: 20-27.02.2024 (t2 and t3 not announced, lecture)
" 3att.=+0.5p
- all materials/equipments authorized

2023/2024

- Laboratory - associate professor Radu Damian
- Tuesday 08-12, Il.13 / (08:10)
- L-25\% final grade
- ADS, 4 sessions
- Attendance + personal results
- P - 25\% final grade
- ADS, 3 sessions (-1? 20.02.2024)
" personal homework

Materials

- http://rf-opto.etti.tuiasi.ro

Microwave Devices and Circuits for Radiocommunications (English)
Course: MDCR (2017-2018)
Course Coordinator: Assoc.P. Dr. Radu-Florin Damian
Code: EDOS412T
Discipline Type: DOS; Alternative, Specialty
Credits: 4
Enroilment Year: 4, Sem. 7
Activities
Course: Instructor: Assoc.P. Dr. Radu-Florin Damian, 2 Hours/Week, Specialization Section, Timetable: Laboratory: Instructor: Assoc.P. Dr. Radu-Florin Damian, 1 Hours/Week, Group, Timetable:

Evaluation

Type: Examen
A: 50\%, (Test/Colloquium)
B: 25%, (Seminary/Laboratory/Project Activity)
D: 25%, (Homework/Specialty papers)
Grades
Aggregate Results
Attendance
Course
Laboratory
Lists
Bonus-uri acumulate (final).
Studenti care nu pot intra in examen
Materials
Course Slides
MDCR Lecture 1 (pdf, 5.43 MB , en, 8 m)
MDCR Lecture 2 (pdf, $3.67 \mathrm{MB}, \mathrm{en}, \neq$)
MDCR Lecture 3 (pdf, $4.76 \mathrm{MB}, \mathrm{en}$, \#\#)
MDCR Lecture 4 (pdf, 5.58 MB , en,

Online Exams

In order to participate at online exams you must get ready following

Site

Microwave and Optoelectronics Laboratory is.
We are enlisted in the Telecommunications Department of the Electronics, Telecommunication and Information Technology Faculty (ETTI) from the "Gh. Asachi" Technical University (TUIASI) in Iasi, Romania We currently cover inside ETTI the fields related to:

- Microwave Circuits and Devices
- Microwave Citoelectronics
- Information Technology

Courses

Nr.	Course	Shortaut	Code	Type	Semester	Credits	Weekdy	Examination Link
1	Microwave Devices and Circuits for Radiocommunications	DCMR	DOS412T	DOS	7	4	OP,1L,0S,2C	Exam
2	Monolithic Microwave Integrated Carcuits	CIMM	RD.IA. 207	DOMS	11	6	1.5L, OS, 2C, OP	Exam
3	Advanced Techniques in the Design of the Radio-communications Systems	TAPSR	RD.IA. 103	DIMS	9	6	1.5P,0L, OS, 2C	Exam
4	Optical Communications	co	D05409T	DOS	7	5	OP, 1L, OS, 3C	Colloquiu
5	Optical Communications	OC	EDOS409T	DOS	7	5	OP,1L,05,3C	Exam
6	Satellite Communications	cs	RC.IA. 104	DIMS	9	6	0L,0S,2C,1.5P	Exam
7	Applied Informatics 1	IA1	DOF135	DOF	1	4	OP, 1L, 0S,2C	Verificatic
8	Applied Informatics 1	AI1	EDOF135	DOF	1	4	OP, 1L, $05,2 \mathrm{C}$	Verificatic
9	Databases, Web Programming and Interfacing	DWPI	ITT.IA. 601	DIS	11	5	1P,1L,0.25s,1C	Verificatic
10	Web Applications Design	PAW	RC.IA. 108	DIMS	10	5	1L,0S,1.5C,1P	Exam
11	Optoelectronics	OPTO	DID405M	DID	8	4	OP,1L, OS, 2C	Colloquiu
12	Microwave Devices and Circuits for Radiocommunications (English)	MDCR	EDos412T	dos	8	4	OP,1L, OS,2C	Exam

Materials

- RF-OPTO
- http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering", Wiley; 4th edition, 2011
- 1 exam problem \leftarrow Pozar
- Photos
- sent by email/online exam > Week4-Week6
- used at lectures/laboratory

Online

- access to online exams requires the password received by email

Password

received by email

Important message from RF-OPTO

Inbox x

Radu-Florin Damian
to me, POPESCU -
$\overline{\text { }}_{\text {A }}$ Romanian * $>$ English * Translate message

Laboratorul de Microunde si Optoelectronica
Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei
Universitatea Tehnica "Gh. Asachi" las

In atentia: POPESCU GOPO ION
Parola pentru a accesa examenele pe server-ul rf-opto este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare
Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION
The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation
Save this message in a safe place for later use
:
Subject
Important message from RF-OPTO
$\infty \quad$ Correspondents

Validation of IviUCR exam trom UZ/05/2020

From Me rdamian@etti.tuiasi.ro
S Aect Important message from RF-OPTO

Cc Me rdamian@etti.tuiasi.ro *

Laboratorul de Microunde si Optoelectronica
Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei
Universitatea Tehnica "Gh. Asachi" lasi

In atentia: POPESCU GOPO ION

Parola pentru a accesa examenele pe server-ul rf-opto este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare.

Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION
The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation.
Save this message in a safe place for later use

Adrese email

- Sefii de grupa
- lista cu adrese de email utilizate de toti studentii
" poate fi @student.etti.tuiasi.ro (@gmail @yahoo etc.)
" rdamian@etti.tuiasi.ro

Online exam manual

- The online exam app used for:
=-lectures (attendance)
- laboratory
- project
-examinations

Materials

Other data

Manual examen on-line (pdf, 2.65 yB, ro, II) Simulare Examen (video) (mp4, 65 12 MB, ro, II)

Microwave Devices and Circuits (Enqlis

Examen online

- always against a timetable
- long period (lecture attendance/laboratory results)
"-short period (tests: 15min, exam: 2h)

Announcement

This is a "fake" exam, introduced to familiarize you with the server interface and to perform the necessary actions during an exam: thesis scan, selfie, use email for co

Server Time

All exame aro hased on the server's time zone (it may be different from local time). For reference time on the server is now:

Online results submission

many numerical values／files

Simam	dis					bemer																
．		${ }_{\text {che }}^{\text {a }}$						15588	2	15.35	18091	3329	115.19	79.9	${ }^{37}$							
		${ }_{\text {cose }}$			$\frac{85 .}{\text { a }}$		．97	1335	3.45	3379	5556	2212	1	。	。		，	。				
					$\frac{.}{\text { asid．}}$					。	。	\bigcirc		－	－	－		。				
							so	50	50	50	50	50	50									
		$\frac{58}{550}$	（emem		$\frac{85 .}{\frac{85}{564}}$	$\frac{85}{\frac{45}{5} 5}$	18 18022	150.5	1728	1375	92.12	12.107	124．48	9.36	36．							
			既			$\frac{85}{\frac{85}{565} \text { ．}}$	1222	80，	2092	120.85	135.1	1837	107.6									
											2271	180.17										
	$\frac{8.800}{5080}$						15084	1225	30.9	${ }^{323}$	5436	1983	22.85	6.1								
	$\frac{855.55}{2050}$					$\frac{\frac{85}{555}}{\frac{5}{355}}$						1237		269705	${ }^{36.16}$							

Online results submission

- many numerical values

Online results submission

Grade = Quality of the work +

 + Quality of the submission
Exam: Logarithmic scales

$$
d B \quad=10 \cdot \log _{10}\left(P_{2} / P_{1}\right)
$$

$\mathrm{dBm}=10 \cdot \log _{10}(\mathrm{P} / 1 \mathrm{~mW})$

0 dB	$=1$
+0.1 dB	$=1.023(+2.3 \%)$
+3 dB	$=2$
+5 dB	$=3$
+10 dB	$=10$
-3 dB	$=0.5$
-10 dB	$=0.1$
-20 dB	$=0.01$
-30 dB	$=0.001$

0 dBm	$=1 \mathrm{~mW}$
3 dBm	$=2 \mathrm{~mW}$
5 dBm	$=3 \mathrm{~mW}$
10 dBm	$=10 \mathrm{~mW}$
20 dBm	$=100 \mathrm{~mW}$
-3 dBm	$=0.5 \mathrm{~mW}$
-10 dBm	$=100 \mu \mathrm{~W}$
-30 dBm	$=1 \mu \mathrm{~W}$
-60 dBm	$=1 \mathrm{nW}$

$[\mathrm{dBm}]+[\mathrm{dB}]=[\mathrm{dBm}]$
$[\mathrm{dBm} / \mathrm{Hz}]+[\mathrm{dB}]=[\mathrm{dBm} / \mathrm{Hz}]$

$$
[\mathrm{x}]+[\mathrm{dB}]=[\mathrm{x}]
$$

Computing Loss/Gain in circuits

$$
\begin{aligned}
& \text { Gain } / \text { Loss }=\frac{P_{\text {out }}}{P_{\text {in }}} \\
& \operatorname{Loss}[\mathrm{dB}]=[-] 10 \cdot \log _{10}\left(\frac{P_{\text {out }}}{P_{\text {in }}}\right) \\
& \operatorname{Loss}[\mathrm{dB}]=[-] 10 \cdot \log _{10}\left(\frac{P_{\text {out }}}{P_{0}} \cdot \frac{P_{0}}{P_{\text {in }}}\right) \\
& \operatorname{Loss}[\mathrm{dB}]=[-] 10 \cdot\left[\log _{10}\left(\frac{P_{\text {out }}}{P_{0}}\right)-\log _{10}\left(\frac{P_{\text {in }}}{P_{0}}\right)\right]
\end{aligned}
$$

$\operatorname{Loss}[\mathrm{dB}]=[-]\left(P_{\text {out }}[\mathrm{dBm}]-P_{\text {in }}[\mathrm{dBm}]\right)$

Computing Loss/Gain in circuits

$$
\begin{aligned}
& \text { Loss }=\frac{P_{\text {out }}}{P_{\text {in }}}<1 \\
& \text { Loss }[\mathrm{dB}]=10 \cdot \log _{10}\left(\frac{P_{\text {out }}}{P_{\text {in }}}\right)<0 \\
& \text { Gain }=\frac{P_{\text {out }}}{P_{\text {in }}}>1
\end{aligned} \quad \text { Gain[dB] }=10 \cdot \log _{10}\left(\frac{P_{\text {out }}}{P_{\text {in }}}\right)>0 \$ 10 \cdot \log _{10}\left(\frac{P_{\text {out }}}{P_{\text {in }}}\right)
$$

$$
\text { Attenuation }[\mathrm{dB} / \mathrm{km}]=\frac{\operatorname{Loss}[\mathrm{dB}]}{\text { Length }[\mathrm{km}]}
$$

Computing Loss/Gain in circuits

Loss/Attenuation $\rightarrow P_{\text {out }}<P_{\text {in }} \rightarrow P_{\text {out }}[\mathrm{dBm}]<P_{\text {in }}[\mathrm{dBm}]$
$P_{\text {out }}[\mathrm{dBm}]=P_{\text {in }}[\mathrm{dBm}]-$ Loss $/$ Attenuation $[\mathrm{dB}]$

Gain/Amplification $\rightarrow P_{\text {out }}>P_{\text {in }} \rightarrow P_{\text {out }}[\mathrm{dBm}]>P_{\text {in }}[\mathrm{dBm}]$
$P_{\text {out }}[\mathrm{dBm}]=P_{\text {in }}[\mathrm{dBm}]+$ Gain/Amplification $[\mathrm{dB}]$

Exam: Logarithmic scales

Examen

- Complex numbers arithmetic!!!!
$z=a+j \cdot b ; j^{2}=-1$

Polar representation

- Euler's formula

$$
e^{j \cdot x}=\cos x+j \cdot \sin x ; \forall x \in R
$$

- Polar representation

$$
\begin{aligned}
& z=a+j \cdot b=|z| \cdot e^{j \cdot \varphi} \\
& z=a+j \cdot b=|z| \cdot(\cos \varphi+j \cdot \sin \varphi)
\end{aligned}
$$

$$
z^{n}=\left(|z| \cdot e^{j \cdot \varphi}\right)^{n}=|z|^{n} \cdot e^{j \cdot n \cdot \varphi}=|z|^{n} \cdot[\cos (n \cdot \varphi)+j \cdot \sin (n \cdot \varphi)]
$$

$$
\sqrt{z}=\left(|z| \cdot e^{j \cdot \varphi}\right)^{1 / 2}=\sqrt{|z|} \cdot e^{j \cdot \frac{\varphi}{2}}=\sqrt{|z|} \cdot\left(\cos \frac{\varphi}{2}+j \cdot \sin \frac{\varphi}{2}\right)
$$

$$
z \cdot w=|z| \cdot e^{j \cdot \varphi} \cdot|w| \cdot e^{j \cdot \theta}=|z| \cdot|w| \cdot e^{j \cdot(\varphi+\theta)}=|z| \cdot|w| \cdot[\cos (\varphi+\theta)+j \cdot \sin (\varphi+\theta)]
$$

$$
z / w=\frac{|z| \cdot e^{j \cdot \varphi}}{|w| \cdot e^{j \cdot \theta}}=\frac{|z|}{|w|} \cdot e^{j \cdot \varphi} \cdot e^{-j \cdot \theta}=\frac{|z|}{|w|} \cdot[\cos (\varphi-\theta)+j \cdot \sin (\varphi-\theta)]
$$

Polar representation

- Attention to angle numerical values!!
- math software - work in standard unit: radians
- a conversion is necessary before and after using a trigonometric function (sin, cos, tan, atan, tanh)
- scientific calculators have the built-in option of choosing the angle unit
- always double check current working unit

$$
\begin{aligned}
& \left.\varphi^{[0}\right]=180^{\circ} \cdot \frac{\varphi[\mathrm{rad}]}{\pi} \\
& \varphi[\mathrm{rad}]=\pi \cdot \frac{\varphi\left[^{\circ}\right]}{180^{\circ}}
\end{aligned}
$$

Introduction

Microwaves

Frequency（Hz）

$\begin{gathered} 3 \times 10 \\ \hline \end{gathered}$		$\stackrel{3}{3 \times 10^{6}}$	3×10^{7} 1	$0^{7} \quad 3 \times 10^{8}$	3×10^{9} 1	3×10^{10}	3×10^{11}	3×10^{12} 1	3×10^{13} 1	3×10^{14}
			T	1.91	Microwaves		1		（1）	
			1	｜			，			
			1	$>1 \pm 1$			｜			
	－			－1			｜			
				生1雨1			।			
				『1唇1			I			
	\sum						I			
	$1<$	I	1	｜$\sum_{1} 1$			I			
		1	1	，			I			
		1	${ }_{1}$	－	1	1	1	1	－	
10^{3}		10^{2}	10	1	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-6}
					Wavel	ngth（m）				

－typically
－ $\mathrm{f} \approx 1 \div 3 \mathrm{GHz}-300 \mathrm{GHz}$
－$\lambda \approx 1 \mathrm{~mm}-10 \mathrm{~cm}$

Microwaves

Typical Frequencies
AM broadcast band
Short wave radio band
FM broadcast band
VHF TV (2-4)
VHF TV (5-6)
UHF TV (7-13)
UHF TV (14-83)
US cellular telephone
European GSM cellular
GPS

Microwave ovens US DBS
US ISM bands

US UWB radio

Approximate Band Designations
$535-1605 \mathrm{kHz}$
$3-30 \mathrm{MHz}$
$88-108 \mathrm{MHz}$
$54-72 \mathrm{MHz}$
$76-88 \mathrm{MHz}$
$174-216 \mathrm{MHz}$
$470-890 \mathrm{MHz}$
$824-849 \mathrm{MHz}$
869-894 MHz
880-915 MHz
$925-960 \mathrm{MHz}$
1575.42 MHz
1227.60 MHz
2.45 GHz
$11.7-12.5 \mathrm{GHz}$
902-928 MHz
$2.400-2.484 \mathrm{GHz}$
5.725-5.850 GHz
3.1-10.6 GHz

Medium frequency
High frequency (HF)
Very high frequency (VHF)
Ultra high frequency (UHF)
L band $\quad 1-2 \mathrm{GHz}$
S band $\quad 2-4 \mathrm{GHz}$
C band $\quad 4-8 \mathrm{GHz}$
X band $\quad 8-12 \mathrm{GHz}$
Ku band $\quad 12-18 \mathrm{GHz}$
K band
Ka band
U band
V band
E band
W band
F band
$300 \mathrm{kHz}-3 \mathrm{MHz}$
$3 \mathrm{MHz}-30 \mathrm{MHz}$
$30 \mathrm{MHz}-300 \mathrm{MHz}$
$300 \mathrm{MHz}-3 \mathrm{GHz}$
$18-26 \mathrm{GHz}$
$26-40 \mathrm{GHz}$
$40-60 \mathrm{GHz}$
$50-75 \mathrm{GHz}$
$60-90 \mathrm{GHz}$
$75-110 \mathrm{GHz}$
$90-140 \mathrm{GHz}$

ELF, VLF

- Extremely low frequency, 3-30 Hz
- Very low frequency, 3-30 kHz

~ Microwaves

- Electrical Length (Phase Length)
- I - physical length
- $\mathrm{E}=\beta \cdot \mathrm{I}$ - electrical Length

$$
\begin{aligned}
& E=\beta \cdot l=\frac{2 \pi}{\lambda} \cdot l=2 \pi \cdot\left(\frac{l}{\lambda}\right) \\
& E=\beta \cdot l=\frac{2 \pi}{c_{0}} \cdot\left(l \cdot f \cdot \sqrt{\varepsilon_{r}}\right)
\end{aligned}
$$

V, I vary
~ useless

- Dependency
- antenna gain
- radar cross-section

Electrical Length

- Behavior (and description) of any circuit depends on his electrical length at the particular frequency of interest
- E $\approx 0 \rightarrow$ Kirchhoff
- E>0 \rightarrow wave propagation

$$
E=\beta \cdot l=\frac{2 \pi}{\lambda} \cdot l=2 \pi \cdot\left(\frac{l}{\lambda}\right)
$$

Maxwell's Equations

$\nabla \times E=-\frac{\partial B}{\partial t}$
$\nabla \times H=\frac{\partial D}{\partial t}+J$
$\nabla \cdot D=\rho$
$\nabla \cdot B=0$
$\nabla \cdot J=-\frac{\partial \rho}{\partial t}$

Constitutive equations

$$
\begin{aligned}
& D=\varepsilon \cdot E \\
& B=\mu \cdot H \\
& J=\sigma \cdot E
\end{aligned}
$$

- Vacuum

$$
\begin{aligned}
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} \\
& \varepsilon_{0}=8,854 \times 10^{-12} \mathrm{~F} / \mathrm{m}
\end{aligned}
$$

$$
c_{0}=\frac{1}{\sqrt{\varepsilon_{0} \cdot \mu_{0}}}=2,99790 \cdot 10^{8} \mathrm{~m} / \mathrm{s}
$$

Electromagnetic fields with harmonic time dependence

$$
\begin{aligned}
& X=X_{0} e^{j \cdot \omega t} \quad \frac{\partial X}{\partial t}=j \cdot \omega \cdot X \\
& g(\omega)=\int_{-\infty}^{\infty} f(t) \cdot e^{-j \omega t} d t \quad f(t)=\int_{-\infty}^{\infty} g(\omega) \cdot e^{j \omega t} d \omega
\end{aligned}
$$

- Maxwell's Equations more simple
$\nabla^{2} E+\omega^{2} \varepsilon \mu E=j \omega \mu J+\frac{1}{\varepsilon} \nabla \rho$
$\nabla^{2} H+\omega^{2} \varepsilon \mu H=-\nabla \times J$
$\nabla \cdot E=\frac{\rho}{\varepsilon}$
$\nabla \cdot H=0$

Mathematical models

- particular cases where analytical solution exists
- harmonic signals, Fourier Transform, frequency spectrum
$X=X_{0} e^{j \cdot \omega t} \quad \frac{\partial X}{\partial t}=j \cdot \omega \cdot X \quad g(\omega)=\int_{-\infty}^{\infty} f(t) \cdot e^{-j \omega t} d t \quad f(t)=\int_{-\infty}^{\infty} g(\omega) \cdot e^{j \omega t} d \omega$

Mathematical models

Mathematical models

Wave equations

- Helmoltz equations or Wave equations

Medium void of free electric charges

$$
\begin{aligned}
& \nabla^{2} E-\gamma^{2} E=0 \\
& \nabla^{2} H-\gamma^{2} H=0 \\
& \gamma^{2}=-\omega^{2} \varepsilon \mu+j \omega \mu \sigma
\end{aligned}
$$

γ - propagation constant (known also as phase constant or wave number)

Solutions of the wave equations

Circular Polarization

Electric field only in Oy direction, \leftarrow through judicious choice wave traveling after Oz direction \leftarrow of the coordinate system

$$
\begin{aligned}
& E_{y}=E_{+} e^{-\gamma \cdot z}+E_{-} e^{\gamma \cdot z} \\
& \gamma=\sqrt{-\omega^{2} \varepsilon \mu+j \omega \mu \sigma}=\alpha+j \cdot \beta
\end{aligned}
$$

If we have only the positive direction wave $\mathrm{E}_{+}=>\mathrm{A}$

$$
E_{y}=A e^{-(\alpha+j \cdot \beta) \cdot z}
$$

Harmonic Field

Attenuation

$$
\begin{aligned}
& E_{y}\left(z_{1}\right)=C t \cdot e^{-\alpha \cdot z_{1}} \cdot e^{j\left(\omega \cdot t-\beta \cdot z_{1}\right)} \quad E_{y}\left(z_{2}\right)=C t \cdot e^{-\alpha \cdot z_{2}} \cdot e^{j\left(\omega \cdot t-\beta \cdot z_{2}\right)} \\
& W, P \sim \int E^{2} \\
& A=\frac{P_{2}}{P_{1}}=\frac{C t^{2} \cdot e^{-2 \alpha \cdot z_{2}}}{C t^{2} \cdot e^{-2 \alpha \cdot z_{1}}}=e^{-2 \alpha \cdot\left(z_{2}-z_{1}\right)} \\
& A[d B]=10 \log _{10} \frac{P_{2}}{P_{1}}=10 \log _{10}\left[e^{-2 \alpha \cdot\left(z_{2}-z_{1}\right)}\right] \\
& A[d B]=-20 \cdot \alpha \cdot\left(z_{2}-z_{1}\right) \log _{10} e=-8.686 \cdot \alpha \cdot\left(z_{2}-z_{1}\right) \\
& A / L[d B / k m]=-8.686 \cdot \alpha<0
\end{aligned}
$$

- Attenuation usually expressed in dB/km
- most of the time a positive value is used
* "-" sign = implied by the word used

Plane wave parameters

$$
\begin{aligned}
& \nabla \times E=-j \omega \mu \cdot H \\
& H_{x}=\frac{j \gamma \cdot E_{y}}{\omega \mu}
\end{aligned}
$$

Lossless Medium, $\sigma=0$

$$
\gamma=j \omega \cdot \sqrt{\varepsilon \mu}
$$

$$
\eta=\frac{E_{y}}{H_{x}}=\sqrt{\frac{\mu}{\varepsilon}}
$$

intrinsic impedance of the medium
$E_{y}=A \cdot e^{-\alpha \cdot z} \cdot e^{j(\omega \cdot t-\beta \cdot z)} \quad$ constant phase points: $\quad(\omega \cdot t-\beta \cdot z)=$ const
Phase velocity $\quad v_{p}=\frac{d z}{d t}=\frac{\omega}{\beta}=\frac{1}{\sqrt{\varepsilon \mu}}$
Group velocity

$$
v_{g}=\frac{d z}{d t}=\frac{d \omega}{d \beta}
$$

in dispersive media where $\beta=\beta(\omega)$

Group and phase velocities

- Phase velocity - virtual speed at which a constant phase point travels (in certain conditions might be greater than the speed of light)
- Group velocity - speed at which the signal (energy, information) propagates (always less or equal to the speed of light in that medium)
whanhomumaumat

Plane wave parameters

- In vacuum
$\eta_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=377 \Omega \quad v=v_{g}=c_{0} \quad c_{0}=\frac{1}{\sqrt{\varepsilon_{0} \cdot \mu_{0}}}=2,99790 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$
$\lambda_{0}=\frac{2 \pi}{\beta}=\frac{c_{0}}{f}$
Space periodicity
$T=\frac{2 \pi}{\omega}=\frac{1}{f}$
Time periodicity
- In non-dispersive medium with ε_{r}
$c=\frac{1}{\sqrt{\varepsilon \cdot \mu_{0}}}=\frac{1}{\sqrt{\varepsilon_{0} \varepsilon_{r} \cdot \mu_{0}}}=\frac{c_{0}}{\sqrt{\varepsilon_{r}}}$
$n=\sqrt{\varepsilon_{r}} \quad$ refractive index of a medium $\quad c=\frac{c_{0}}{n}$

$$
T=\frac{2 \pi}{\omega}=\frac{1}{f} \quad \lambda=\frac{2 \pi}{\beta}=\frac{c}{f} \quad \lambda=\frac{c_{0}}{\sqrt{\varepsilon_{r}} \cdot f}=\frac{\lambda_{0}}{\sqrt{\varepsilon_{r}}}
$$

Solutions of the wave equations

$E_{y}=E^{+} e^{-\gamma \cdot z}+E^{-} e^{\gamma \cdot z}$
$\gamma=\sqrt{-\omega^{2} \varepsilon \mu+j \omega \mu \sigma}=\alpha+j \cdot \beta$

- wave
- incident
- reflected
- wave
- direct
- inverse

Electric field only in Oy direction, \leqslant through judicious choice wave traveling after Oz direction \leftarrow of the coordinate system

$$
E_{y}=E^{+} \cdot e^{-\alpha \cdot z} \cdot e^{j(\omega \cdot t-\beta \cdot z)}
$$

$$
E_{y}=E^{-} \cdot e^{\alpha \cdot z} \cdot e^{j(\omega \cdot t+\beta \cdot z)}{ }_{(\omega \cdot t+\beta \cdot z)=\mathrm{const}}
$$

Solutions of the wave equations

- wave
- incident

$$
E_{y}=E^{+} \cdot e^{-\alpha \cdot z} \cdot e^{j(\omega \cdot t-\beta \cdot z)}+E^{-} \cdot e^{-\alpha \cdot z} \cdot e^{j(\omega \cdot t+\beta \cdot z)}
$$

- reflected
- wave
- direct
- inverse

$$
V(z)=V^{+} \cdot e^{-\alpha \cdot z} \cdot e^{j(\omega \cdot t-\beta \cdot z)}+V^{-} \cdot e^{-\alpha \cdot z} \cdot e^{j(\omega \cdot t+\beta \cdot z)}
$$

$$
\begin{aligned}
& I(z)=I^{+} \cdot e^{-\alpha \cdot z} \cdot e^{j(\omega \cdot t-\beta \cdot z)}+I^{-} \cdot e^{-\alpha \cdot z} \cdot e^{j(\omega \cdot t+\beta \cdot z)} \\
& V(z)=V^{+} \cdot e^{j(\omega \cdot t-\beta \cdot z)}+V^{-} \cdot e^{j(\omega \cdot t+\beta \cdot z)}
\end{aligned}
$$

Mathematical modeling

particular cases where analytical solution exists

- wave in a single direction $E^{+}\left(E^{+}\right), E^{-}\left(E^{-}\right)$
- wave
- incident

$$
E_{y}=E^{+} \cdot e^{-\alpha \cdot z} \cdot e^{j(\omega \cdot t-\beta \cdot z)}+E^{-} \cdot e^{-\alpha \cdot z} \cdot e^{j(\omega \cdot t+\beta \cdot z)}
$$

- reflected

$$
E_{I N}=E_{1+} e^{-\gamma \cdot z}+E_{1-} e^{\gamma \cdot z} \longrightarrow \leftrightarrow \square \leftrightarrow E_{\text {OUT }}=E_{2+} e^{-\gamma \cdot z}+E_{2-} e^{\gamma \cdot z}
$$

- wave
- direct
- inverse

Modes in delimited media

- Electromagnetic fields with harmonic time dependence
- Maxwell's Equations simplified
$X=X_{0} e^{j \cdot \omega t} \quad \frac{\partial X}{\partial t}=j \cdot \omega \cdot X \quad g(\omega)=\int_{-\infty}^{\infty} f(t) \cdot e^{-j \omega t} d t \quad f(t)=\int_{-\infty}^{\infty} g(\omega) \cdot e^{j \omega t} d \omega$
- In delimited media the solutions of Maxwell's Equations must also verify boundary conditions
- solutions must respect some supplemental conditions

Interface conditions on the interface between two different media

a)

b)

$$
\begin{array}{ll}
n \times\left(E_{1}-E_{2}\right)=0 & n \cdot\left(D_{1}-D_{2}\right)=\rho_{S} \\
n \times\left(H_{1}-H_{2}\right)=J_{S} & n \cdot\left(B_{1}-B_{2}\right)=0
\end{array}
$$

- If one of the media is a perfect conductor (metal) all fields are annulled inside

Modes in delimited media

- Electric field must always be normal on an electric wall or annulled
- Magnetic field must always be tangent to an electric wall or annulled

a)

b)

TE_{10}

TM_{11}

Moduri in medif delimitate

TE10

TM11

TE21

TE31

TE01

TE11

TE30

TE02

TE20

TM21

TM31

TE40

TM12

TE22

TM32

TM51

TE12

TM41

TE32

TE51

TM22

TE41

TE50

TM42

- Similar with Fourier Transform

$$
g(\omega)=\int_{-\infty}^{\infty} f(t) \cdot e^{-j \omega t} d t \quad f(t)=\int_{-\infty}^{\infty} g(\omega) \cdot e^{j \omega t} d \omega
$$

$$
E^{+}, E^{-}=\sum_{1}^{\infty} A_{i} \cdot \operatorname{Mod}_{i} \quad A_{i}=\left\langle E, \operatorname{Mod}_{i}\right\rangle
$$

Mathematical modeling

- particular cases where analytical solution exists
- harmonic signals, Fourier Transform, frequency spectrum
$X=X_{0} e^{j \cdot \omega t} \quad \frac{\partial X}{\partial t}=j \cdot \omega \cdot X \quad g(\omega)=\int_{-\infty}^{\infty} f(t) \cdot e^{-j \omega t} d t \quad f(t)=\int_{-\infty}^{\infty} g(\omega) \cdot e^{j \omega t} d \omega$

Mathematical modeling

Mathematical modeling

Mathematical modeling

particular cases where analytical solution exists

- wave in a single direction $E^{+}\left(E^{+}\right), E^{-}\left(E^{-}\right)$
- wave
- incident

$$
E_{y}=E^{+} \cdot e^{-\alpha \cdot z} \cdot e^{j(\omega \cdot t-\beta \cdot z)}+E^{-} \cdot e^{-\alpha \cdot z} \cdot e^{j(\omega \cdot t+\beta \cdot z)}
$$

- reflected

$$
E_{I N}=E_{1+} e^{-\gamma \cdot z}+E_{1-} e^{\gamma \cdot z} \longrightarrow \square E_{\text {OUT }}=E_{2+} e^{-\gamma \cdot z}+E_{2-} e^{\gamma \cdot z}
$$

- wave
- direct
- inverse

Mathematical modeling

particular cases where analytical solution exists

- modes in delimited media $B_{i}\left(A_{i}\right)$

TE10

TM11

TE21

TE31

TE01

TE11

TE30

TE02

TE20

TM21

TM31

TE40

Contact

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro

